SVISCISVS

Product Datasheet

Octet[®] SSA Biosensors

For Analysis of Small Molecule-Protein Interactions

Key Features

- Enables immobilization of any protein in high density via streptavidin
- Designed for use in small-molecule and fragment screening and kinetic characterization

Quick Facts

- Immobilization Chemistry: High-density streptavidin
- Baseline Stability: 60 minutes
- Number of Acceptable Regeneration Cycles: protein dependent

Overview

Small molecule kinetics can be rapidly measured in high throughput on the Octet[®] instruments. In a typical experiment, a biotinylated protein target is immobilized onto the Octet[®] high-capacity Super Streptavidin (SSA) Biosensor surface, and this surface is exposed to a solution of the small molecule in a microplate well. The association of the small molecule to the target protein on the biosensor is measured over time. Finally, the biosensor is moved to a well containing buffer to monitor the dissociation of the small molecule from the target protein. Rate constants can be calculated from the binding data, including on-rate (k_{on} or k_{a}), off-rate (k_{off} or k_{d}), and equilibrium dissociation constant (K_{D}).

Use of the Octet® SSA Biosensors

When performing small molecule analysis on the Octet[®] system, each Octet[®] SSA Biosensor can be used for multiple analyses since most small molecules have affinities greater than 1 nM and thus dissociate fully after several minutes. Typical experiments include both biosensors immobilized with the biotinylated target protein (target biosensors) and biosensors blocked with biocytin (reference biosensors). Figure 1 shows data for the binding of furosemide (330 Daltons) to carbonic anhydrase collected on an Octet[®] R8 system. The precision for a typical run on the Octet[®] R8 system is shown in Table 1.

Data Analysis

Analysis of small molecule kinetic data is easy using the Octet[®] BLI Analysis Software. The software supports both Global analysis and Steady State analysis of kinetic data sets. Global analysis derives a single set of parameters

Figure 1: Processed data for the binding of furosemide (330 Da) to carbonic anhydrase. Data shown is a result of the subtraction of the biocytin reference biosensor data from the carbonic anhydrase biosensor data. The binding of furosemide at 0.12, 0.37, 1.1, 3, 10, and $30 \,\mu\text{M}$ is clearly visible.

including R_{max} , k_{orr} , k_{off} , and $K_{\rm D}$ from a set of association and dissociation curves from a concentration series (see the *Octet® Data Analysis User Guide* for more information). This method generates more precise and accurate data than results obtained from association and dissociation data from a single concentration.

An example of global fitting of a titration series is shown in Figure 2. The K_D can also be derived from equilibrium responses using Steady State analysis. This method does not generate k_{on} and k_{off} values. The experiment requires a concentration-dependent response, and dilutions of 2–4X are recommended for a six-point concentration series (minimum). An example is shown in Figure 2 (right).

Table 1: Precision of furosemide analysis with carbonic anhydrase on the Octet® R8 system.

Analysis	R _{max} (∆nm)	R _{max} Error	k _{off} (1/s)	k _{on} (1/Ms)	k _{on} Error	<i>K</i> _D (M)	Chi²	R ²
1	0.0975	0.0001	7.83E-02	6.49E+04	4.57E+02	1.21E-06	0.053	0.99
2	0.1017	0.0001	7.88E-02	5.75E+04	3.84E+02	1.37E-06	0.050	0.99
3	0.0951	0.0002	8.52E-02	6.76E+04	5.66E+02	1.26E-06	0.067	0.99
4	0.0976	0.0002	7.97E-02	6.20E+04	4.69E+02	1.28E-06	0.059	0.99
5	0.0931	0.0001	8.32E-02	8.72E+04	6.97E+02	9.54E-07	0.063	0.99
Avg	0.097	0.0002	0.081	67836	515	1.22E-06	0.058	0.989
SD	0.003	0.0002	0.003	11453	121	1.57E-07	0.007	0.002

Figure 2: Global analysis of small molecule binding data at 0.12-30 µM (left), residuals for curve fitting (center), and the steady-state plot (right).

The Octet® SSA Biosensors are designed for use with the most senstive Octet® instruments, the Octet® R8, RH16 and RH96 systems. The latest version of software includes a predefined protocol to make this assay easy to run and is available with 21 CFR Part 11 compliance tools.

Ordering Information

UOM	Description
Tray	One tray of 96 Octet® SSA Biosensors coated with streptavidin for small molecule kinetic analysis
Pack	Five trays of Octet® SSA Biosensors coated with streptavidin for small molecule kinetic analysis
Case	Twenty trays of 96 Octet® SSA Biosensors coated with streptavidin for small molecule kinetic analysis
	UOM Tray Pack Case

Note: Additional materials are required to run these assays. Please consult Technical Note 16, Small Molecule Binding Kinetics for full details.

Germany

USA

Sartorius Lab Instruments GmbH & Co. KG Otto-Brenner-Strasse 20 37079 Goettingen Phone +49 551 308 0 Sartorius Corporation 565 Johnson Avenue Bohemia, NY 11716 Phone +1 888 OCTET 75 Or +1 650 322 1360

For further contacts, visit www.sartorius.com/octet-support